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ABSTRACT

\4,/

This paper considers laminated beams with layers of different isotropic
or orthotropic materials fastened together by thin adhesives. The
stresses that result from subjecting each component layer of the beam
to different temperature or moisture stimuli which may also vary along
the length of the beam, are calculated. Two-dimensional elasticity
theory is used so that a wide range of problems, such as that of beams
composed of layers of orthotropic materials like wood, can be studied,
and accurate distributions of normal and shear stresses obtained. The
stress intensity along the bearing surfaces of the layers of the beam
is of particular importance because it is responsible for delamination
failures of laminated structural elements. The distributions of inter-
laminar normal and shear stresses measured along the longitudinal axis
of the beam indicate that high stress intensity occurs in the end zones
of the beam. Thus, delamination failure, when it occurs, will start at

the ends of the beam.
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LAMINATED BEAMS OF ISOTROPIC OR ORTHOTROPIC MATERIALS

SUBJECTED TO TEMPERATURE CHANGE

By

SHUN CHENGL/
and 2/

T. GERHARDT=

PR

? INTRODUCTION

Beams are among the most widely used structural elements. The appli-
cation of laminated beams is expanding as they are studied and developed
by the forest products industry as well as other industries [1,2,3].
However, the delaminaticn failure or deformation (bow, twist, warp, etc.)
induced in laminated beams by thermal or moisture stimuli has always
been of major concern.

The use of elementary beam theory in solution of this problem does not
allow evaluation of the shearing and normal stresses along the bearing
surface. Thus, these stresses cannot be determined from Timoshenko's
pioneering analysis [4] of a bimetal strip submitted to uniform heating
along its length. Notable contributions on this subject due to Boley
and others may be found in [5,6]. However, Grimado's analysis [7] is

a further consideration, extension, and significant improvement of the
same problem treated by Timoshenko. When Grimado [7] uses elementary
beam theory the effect of the bonding material between the two layers
of the strip is taken into account by treating the bonding material as
a third layer. Grimado deduces a sixth-order governing differential
equation [7] compared to the fourth-order biharmonic equation of plane
stress problems. It is shown in [7] that the sixth~order equation
reduces to a characteristic cubic equation which, unlike the biharmonic
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equation, may yield complex roots when solved. Thus, the analysis
presented in [7] is not necessarily as simple and direct as that based
on the two-dimensional elasticity theory used here.

In the current paper a beam of uniform cross-section made of layers

of different isotropic or orthotropic materials (such as wood, fastened
together by thin adhesives) is considered in accordance with two-
dimensional elastici:y theory. Instead of being subjected to a uniform
heating, treated previously [4,7], each layer may have different tem-
perature distributions along its length. The use of two~dimensional
elasticity theory should accurately yield the distribution of shear

and normal stresses in the beam. The interlaminar stresses between
layers are known to be mainly responsible for delamination failures

of laminated beams. If the stress distribution between layers can be
determined, such failures may be minimized or eliminated by an
appropriate choice of materials and beam-section properties. The use
of two-dimensional elasticity theory can be further justified in the
analysis of beams of orthotropic materials since in such a case
elementary beam theory cannot take into account the effects of material
properties on stresses and deformation.

It is difficult to accurately estimate the effect of the bonding material
on the stress distribution and deformation of the laminated structural
element without also treating the thin layers of the bonding material

in the same way that the component layers of primary concern are treated.
When the bonding material between two component layers is very thin,

the effect of the bonding material on the stress distribution and
deformation of laminated beams can be negligible. Thus, this paper
considers two cases: (1) beams having two component layers rigidly
bonded together and (2) beams having three layers where the bonding
material is treated as a third layer. These are analyzed so that the
effect of the bonding material can be revealed. Special attention is
given to the stress intensity along the bearing surfaces of the layers

of the laminated beams since it is responsible for delamination failures.
Only laminated beams subjected to thermal stimulus are treated in detail.
However, beams subjected to moisture stimulus can be analyzed in the
same way simply by replacing the linear coefficient of thermal expan-
sion multiplied by the change of temperature with a linear coefficient
of moisture shrinkage multiplied by a relative moisture content

{8, p. 3-11}.

TWO-DIMENSIONAL THERMOELASTIC FORMULATION

Consider a beam of unit width which is made of two layers of different
materials fastened together by a thin adhesive, where each layer is
subjected to different arbitrary temperature distribution Ti(x),
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(i = 1,2) along its length. The laminated structure is initially free
from stress. Let the x~axis be the longitudinal axis which lies along
the bonding line of the two layers of the beam of length, £, total
thickness, h, and place the y-axis at the left end of the beam. Let

B e
A o,

hl be the thickness of the top layer, h2 the thickness of the bottom

layer, and dl = hl’ d2 = -h2. Let E be the Young's modulus, G the

shear modulus, and v (Greek letter nu) the Poisson's ratio. Let O and
€ be the components of stress and strain, u and w the displacements
along the x and y directions, and ax and ay the coefficients of

b e EGTRAL N

thermal expansion in directions x and vy, respectively. The next
section, concerning laminated beams of isotropic materials, is limited
to the consideration of a specific case where the beam is uniformly
heated by raising its temperature t degrees. It is a fundamental case
that can reveal the essential features of thermal-stress problems of
laminated beams; the solution can be used to make comparisons with known
results in the literature. A subsequent section, concerning laminated
beams of orthotropic materials, treats the general case of temperature
distribution.

LAMINATED BEAMS OF ISOTROPIC MATERIALS

In this section we consider a laminated beam consisting of two different
isotropic materials. For plane stress distribution the stress-strain

and strain-displacement relations, the governing differential equation,
and the expressions for stresses in terms of a stress function are [9,10].

c9u _1 __ =w _ 1 .
€ "3 " E (0x voy) + aT, ey 9y " E (0y vox) + aT,
(1)
=QE+3_W__1_t
Yy dy 9x ~ G ‘xy
# v = -EaV?T (2)
7 2 2 2
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When the laminated beam is uniformly heated, changing the temperature
by t degrees, Ti may be expressed as

[ ]
T. =t =— 2 % sin nnx (n=1,3,5,...) (4)
n

Accordingly, the biharmonic function ¢i for the ith layer which '

satisfies equation (2) may be taken as

[+ -]
¢i = nil (Anicosh Yy + Bniyy sinh yy + Cnisinh Yy
+ Dniyy cosh yy)sin yx (n = 1,3,5...) (5)
where y = %E. 6)

The boundary conditions on the top and bottom surfaces of the beam are

oy =0, txy =0, on y = di(dl = hl’ d2 = -hz) (7)
In addition to the preceding boundary conditions, the conditions of
continuity along the line of division of the two layers must be
satisfied. These are the continuity of stress
0&1 = oy2’ txyl = txy2’ on y=20 (8)
where oyl and txyl represent stresses acting on the bottom surface
of the top layer of the beam and 0y2 and txyz are stresses acting on
the top surface of the bottom layer of the beam. The continuity of ' ]
displacements across the line of division comsists of
A
u, = u,, v, =, on y=0 (9) .

s WS

Applying bourdary conditions (7) and (8) yields

v

Y
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AniCOSh ydi + Bni ydi sinh ydi + Cnis1nh ydi + Dni ydicosh ydi

(A.+B it Dni ydi)sinh ydi + (cni + Dni + Bni ydi)

From equations (1) and (3) we obtain

du a%¢ 2% o, a%¢ 2%,
1.1 —i_, ) +at, — =L (—E-vy, —h
. t, .
9x E1 ay2 i, 2 i dy E1 ax2 i 3y2
+ a.t
1

(10)

(11)

(12)

(13)

(14)

Integrating the two equations of (14) and expressing x as a Fourier

cosine series

[+ J
x = % - é% 2 ‘% cos yx (0 < x < 2, n=1,3,5,...)
n nn
we obtain
l o
u, = E; nzl Yi{(1+v,)A . + 2B _Jcosh yy + (1+v,)B_.yy sinh yy

+ [(1+vi)Cni + ZDni]sinh Yy + (1+vi)Dniyy cosh yy

4ta E.

+ 31} cos yx + ug (n=1,3,5,...)

2y

(15)

(16)
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w =

[

y{(1+vi)Anisinh Yy + Bni[(l + vi)yy cosh yy - (l-vi) sinh yy]

-1
i E,
1

n=1

+ (1+vi)Cnicosh Yy + Dni[(1+vi)yy sinh yy - (l-vi)cosh yvl}sin yx

+ uity + wg (n =1,3,5,...) (17)

Taking the point x =0 and y = 0 as rigidly fixed so that u, = 0,
wo = 0 at that point, from equations (16) and (17) we find

o 1 o AtuiEi o
u =g 2 yl 3 + (1+vi)Ani + 2Bni]’ w, = 0 (18)
i n=1,3,... Ly
Applying the continuity conditions (9) u, = u, and w, = w, along the
. S . 1 2 1 2
line of division y = 0 yields
E2 4E. t
E; [(1+vi)Anl + 2Bn1] - (1+V2)An2 - 2Bn2 = gy3 (az—ul) (19)
EZ
EI [(1+v1)Cnl - (l-vl)Dnll - (1+v2)Cnz + (l-vz)Dn2 =0 (20)
and
u) = u?
27" (21)

Solving the eight linear algebraic equations (10) to (13), (19), and

(20), the eight unknown coefficients A ., B ., C ., and D . can be
ni ni ni ni

expressed in closed forms in terms of elastic moduli, thermal linear
strain, and beam dimensions. For numerical solutions these eight
linear algebraic equations can be easily solved in each particular case
and, once the eight coefficients are determined, the following stresses
can be obtained.




§ ®
; _ 2 . .
g . =-2 Y (AniCOSh yy + Bniyy sinh yy + Cn151nh Yy

e

Y p=1,3,...

+ Dniyy cosh yy)sin yx

= 2 . .
txyi = z Y [An151nh Yy + Bni(81nh Yy + Yy cosh yy)
n=1,3,...
+ CniCOSh yy + Dni(COSh Yy + Yy sinh yy)lcos yx (22)
> 2
O = nfl \ Y [AniCOSh Yy + Bni(ZCOSh Yy + Yy sinh yy)
- , 9 v ..

+ CniSinh Yy + Dni(ZSinh Yy + yy cosh yy)]sin yx

From equation (22) it is seen that one of the traction-free end conditions

Oi = 0 at x =0 and x = £ 1is already satisfied. The second

condition, txyi = 0 at both ends of the beam, cannot be satisfied

exactly without superimposing additional solutions. However, this
condition is satisfied in the sense of Saint Venant's principle. With
this principle we may replace the second condition by its statically
equivalent condition:

.dy = 0, at x =0 and x = £ (23)

To show that this condition is satisfied, we proceed as follows. Since

i 2%, a%,
g . = and Tt . = - z—-- , the satisfaction of the boundary
yi axz Xyi 9xdy
conditions oyi =0, Ixyi =0, on y = di and oyl = 0y2’ txyl = Ixyz’

on y = 0 implies




9.

1

¢i =0, 5;— =0 on y = di
(24)
8¢1 8¢2
and ¢1 = ¢2 , 5;— = 5;— on y =20

respectively. But the conditions (24) imply zero resultant shearing
force on any section, X = constant, of the beam. This follows from

h hy 3¢ 0 29,

1 - .9 1 _2
txyidy T dx [ dy dy + o oY dyl

2 0 2

]

|
(o]

<]
5z (0,79,) (25)

Thus, the load on each end of the laminated beam is self-equilibrating.
The problem of exact satisfaction of end conditions of an elastic strip
has been treated by authors [11,12] in the literature. It is beyond

the scope of this article, however, to modify the solution by satisfying
more precisely the free end conditions of the beam.

LAMINATED BEAMS OF ORTHOTROPIC MATERTALS

In the case of plane stress distribution, the stress-strain and strain-
displacement relations for orthotropic materials are [10,13]

0x v X du c v ow
€=""‘""L0 +aT=..__’ s:l__xzo +a T = —
x E E x 9x y E E X y dy
X y y X
(26)
1. _du,
Yoy ° G txy T dy T ax

where Ex’ Ey are the Young's moduli along the principal directions x and
y; G = ny, the shear modulus which characterizes the change of angles

between principal directions x and y, and Vyx’ the Poisson's ratio.
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This ratio characterizes the decrease in Ji.cction x due to tension
in direction y with a similar meaning for the expression ny’ related

to v by
E v = Ev @27

u, w are the displacements along the x and y directions, respectively,
and oy uy represent the coefficients of thermal expansion in principal

directions x and y. Solving equations (26) for stresses yields

E
X
0, = ——— fe +v e - (a+v _a)T(x)]
X 1 nyvyx X VX' y X yX'y
E Ex Ex
o =—Y¥  [e +=2v e - (o0 +=—v_a)T(x)] (28)
1-v_ v E X X E X X
y xyVyx y y y y y y
Txy = nyy

The equations of equilibrium are identically satisfied by introducing
Airy stress function ¢ as

2 2 2
o =20 o =29 o=-20 (29)
p 3 2 y 3x2 Xy Ix3y

The substitution of equations (26) and (29) into the compatibility
relation yields the following governing differential equation for
orthotropic materials

4 2v 4 4 2 2
y 9x X 9x dy x 9y Y ax oy

In the general case a complete Fourier series expansion for Ti(x) is

required. However, the method of solution remains the same whether

-g-
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Ti(x) is expanded in a complete Fourier Series or a sine or a cosine

series. Thus, in the following, only a sine-series expansion is
considered, i.e.,

o

- in DOX f

Ti(x) =3 t ;sin =5 (31) ’

n H

!

;;

in which ;

£

2 5

=2 (n DX

tni =3 Ti(x)51n 2 dx (32) .
0

Corresponding to the expansion (31), the particular and homogeneous
solutions for the ith layer, which satisfy equation (30), may be '
expressed, respectively, as :

= 2.2 . nmx A
pi = nil Eyi%itni (o) sin g (33) f
j
[« ]
¢hi = nzl (Anicosh nAiy + Bni51nh nhiy +
. . nnx
+ Cnicosh ny.y + Dnis1nh npiy)51n 2 (34)

in which A ., B ., C ., D . are arbitrary constants and
ni’ "ni’ ni i

(35)

-10-




4 ' Exi wv/ 2
. B, = = Ki - Ki-l

o
ol
=

2V
=1 1 xyi
where Ki =5 JExiEyi (Gi Exi )

The general integral of equation (30) is the sum of the solutions (33)
and (34), i.e.,

= +
o ¢pi ¢y (36)
In the special case where the two roots Ai and pi of equation (35)

are real and equal (i.e., Ki = 1), the following solution of equation (30)

should be used instead of the solution (34).

[+ ]
- . . anx
% 6. = 2 [Ani + Bniy)cosh nAiy + (Cni + Dniy)51nh nAiy151n 37)

i n=1 L

Having obtained solution (36) we will be able to show that all the
boundary conditions (7), (8), and (9) can be satisfied. Applying the
boundary conditions (7) and (8) yields, respectively,

A .cosh nA d, + B .sinh nA.,d, + C_ .cosh nu_d,
ni ii ni ii ni ii

. _ 2\ 2
* Dpjsinb npd, = - Ejape () , (m=1,2,...) (38)

A.(A .sinh nA.d, + B .cosh hA.d.)
i ni ii ni ii

+ pi(Cn151nh npidi + Dnicosh npidi) =0, (n=1,2,...) (39)

[T SEP
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AZBnZ * p2Dn2 = Aanl

From equations (26) and (29)

2
?ii_ = _1.... (a ¢1 -V
9x Exi 8y2 xyi
2
a_wi = ._l, (a ¢1 -V
i dy Eyi ax2 yxi

Integrating the two equation

«©
u, = 2 z n[(A Ve ——)(A cosh nA, A B
Xi n=1 vi 2
2
+ (y, + ——)(C j6osh op.y + D
i xy 2
ni nnx
n2 (Exiaxi + xy1Ey1 y1)]cos 2
-1 2
W, = —/— Z n{—— (v
3 i Ey1 n=1 A yx1 i
1 2 2
+ ET (vyx1 i ——)(C 1s1nh npy + Dn

1

E

(

+ p,D (n=1,2,...

1 'nl’

we obtain

82¢.

i
)+ o T,
ax2 xi i

az¢i
2 )t oy

dy

s of (42) yields

Ey2ay2tn2 - ylayl nl

sinh nAiy)

sinh nuiy)

—-)(A s1nh nA, A B

cosh nAiy)

icosh npiy)}sin nnx

(40)

(41)

(42)

(43)

(44)




in which the constant u; can be determined by taking the point x
and y = 0 as rigidly fixed in order to have u, = o, w, = 0 at

y = 0. Applying the continuity conditions (9) u, =, and v

H

X
along the axis y = 0 yields

*: [(A—fu—’f)2 + v oA, * [(5‘—,2,—’5)2 + V010 - ;f {[(%f)z
| * Vg1l t [(%2)2 * Vg1l * (ﬁ_n)z [f:_:';' 62 Exo%2 ¥ Vy2Py2¥y2)
- tnl(Exluxl * nylEylayl)]} =0 (45)
A2[(X§E)2 * vyx2]Bn2 * “2[(533)2 vyx2]Dn2 = g!g {Al[(xﬂi :
vyl 1
+ vyxl]Bnl M “1[(Efi)2 + vyxllnnl} (46)
and also u; = ug. (47)

The eight arbitrary coefficients A ., B ., C ., and D . are determined
ni ni’ "ni ni

from the eight linear algebraic equations (38) to (41), (45), and (46)
and then the stresses can be obtained from the following expressions:

00
= - nn,2 .
= b3 {(2 ) [Anicosh nAiy + Bnis1nh nAiy

%
y n=1
+ C .cosh np.y + D__.sinh nu.y] + E_.a .t _}sin nnx (48)
ni i ni i yi yi ni 2
n e 2
txyi =-3 nil n [Ai(Anis1nh nAiy + Bnicosh nAiy)
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. nnx
+ pi(Cnis1nh ny.y + Dnicosh npiy)]cos 2 (49)
> 2.2
o .= 3 n"[AT(A .cosh nA.y + B .sinh nA.y)
xi o i ni i ni i
+ pZ(C cosh ny.y + D .sinh np.y)]sin anx (50)
1" ni i ni i L2

NUMERICAL EXAMPLE AND CONCLUSIONS

CASE A: TWO LAYERED BEAMS HAVING RIGID BOND

The following material constants and beam dimensions are used:

£ =90 cm., hl = h2 =5 cm., to = 400° C = 752° F
- _ 6 2 _ -6 ,.o

V1 = 0.27 El = 20.69x10° N/cm”., dl = 6.5x10 " /F°,
. — 6 2 - -6 o

V2 = 0.33, E2 = 6.89x10 N/cm”., 0!2 = 13x10 "/F°,

Figures 1 and 2 show the distributions of interlaminar normal and shear
stresses, respectively, along the longitudinal axis of the beam. Both
indicate that high stress intensity occurs in the end zones of the beam
and that both stresses decay rapidly with increasing distance from the
ends. The distribution of the stresses in the end zones within a distance
equal to the thickness of each beam, may not be very accurate, especially
for the shear stress. However, the results in figures 1 and 2 show that
both stresses do increase toward the ends of the beam, starting from a
distance greater than the thickness of each layer. Thus, it may be con-
cluded that delamination failure, when it occurs, will start at the ends
of the beam.

Figures 3 and 4 show the distribution of axial stress along the bonding
surface of the upper layer and the lower layer, respectively. The
bonding surface of the upper layer is under tension and that of the
lower layer under compression. Within a short distance from the free
ends of the beam, the axial stress of the upper layer (Fig. 3) reaches
its maximum value and the axial stress of the lower layer (Fig. 4)

-14-




reaches a value slightly less than its maximum value. Both then
remain constant for the remainder of the beam. Other observations
which could be made for Case A will be described later as observa-
tions for Case B.

: N sgamiiieian
EW- 3 S we o

CASE B: TWO LAYERED BEAMS HAVING AN ELASTIC BOND BETWEEN THE
LAYERS (FIG. 5)

The material constants and beam dimensions for the two layers are the
same as those used in the Case A. The following constants are taken
for the thin bonding material between the layers:

h, = .33 cm., v, = .33, = 2.5x10'6/F°,

3 3 o3

Three cases of different modulus of elasticity of the bonding mate-
rial are considered, i.e.,

27.58x10° N/cm?, (2) E. = 4x10° N/cm?

(1) E,y 3

106 N/cm?

(3 E,

We note that the constant c¢ appearing in figures 1-4 and the con- %
stant € in figures 6 through 13 are related as :

C = Ez(az-dl)c = 44.785c.

The observations and conclusions made in the previous Case A also hold
true for the present case. In addition, other observations can be made
from figures 6 through 13. Figures 6 and 8 illustrate that the modulus
of elasticity of the bonding material (adhesive) affects the interlaminar
normal stress only in the narrow end regions, these regions being of the
order of the thickness of the beam. A larger modulus of elasticity in
the bonding material yields significantly larger interlaminar normal
stress in the end regions. However, the interlaminar normal stress is
virtually unaffected by the modulus of elasticity of the adhesive for
the remainder of the beam. Thus, if delamination failure should occur,
it will occur at the ends of the beam. To prevent such failure, adhe-
sives having smaller modulus of elasticity should be preferred.

It is of interest to note that the modulus of elasticity of the bonding
material has only a slight effect on the distribution of the interlaminar

-15-




shear stress as seen from figures 7 and 9, except perhaps in a very short
distance from the ends of the beam. However, in this region the distri-
bution of the shear stress is not accurate, as previously pointed out.
An examination of figures 3, 4, 10 and 11 indicates that the modulus of
elasticity of the bonding material has only slight effect on the axial
stress in the upper and lower layers of the beam. On the other hand,
the modulus of elasticity of the bonding material has significant effect
on the axial stress in the bonding material as seen from figures 12 and
13; a greater modulus yields significantly larger axial stress. We
further note that the maximum axial stress in the upper and lower

layers of the beam is greater than that of the interlaminar normal
stress. However, delamination failure of the bond caused by the
interlaminar normal stress may still occur, as is often the case in
practice, if the bond cannot sustain the required interlaminar normal
stress.

The computer program developed for the numerical calculations is
presented in the Appendix.

-16-
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Figure 1. - Interlaminar normal stress
distribution.
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Figure 3. - Axial stress distribution
along the bonding surface of the upper
layer of a two-layered beam.
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Figure 2. - Interlaminar shear stress
distribution.
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Figure 4. - Axial stress distribution
along the bonding surface of the lower
layer of a two-layered beam.
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Figure 7. - interlaminar shear stress
distribution along the bonding surtface of
the lower layer and the middie layer
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Figure 9. - Interlaminar shear stress
distribution along the bonding surface of
the upper layer and the middle layer
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Figure 12. - Axial stress distribution

along the lower surface of the bonding
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APPENDIX--THERMAL STRESSES ALONG BEARING SURFACES

ISOTROPIC BEAM--A COMPUTER PROGRAM

eGSP,P
PLOTTER PEN/LIQ
¢FOR,IS MAIN

210

299
201
2990

READ THE LAST FOURIER TERM TO BE USED,

IMPLICIT DOUBLE PRECISION (A=H,0-2)
COMMON/BLKZ2/ N

COMMON/BLK3/ NUMLAY
COMMON/BLK7/NTERMS
COMMON/BLK12/Xx(301),Y(301)
COMMON/BLK13/CC(8,1)

COMMON/BLK2O/ AA(B,8),BB(8,1)

CALL MTAMDF (AA,8,8,'D',8,8,'GEN')
CALL MTAMDF (BB,8,1,'D',8,1,'GEN"')
CALL MTADEF (CC,8,1,'D'")

READ (S,201) NTERMS
CALL INPUT

WRITE §6.290) NTERMS
I =1

YC = .0

DO 210 N = 1,NTERMS,?2
CALL DETMAT

CALL SOLVE

CALL COEF(I,YC)
CONTINUE

NPOINT
XSTART
CALL. STRESY (1,I,NPOINT,YC,XSTART,XEND)
CALL GRAPH (X,42,Y,42,NPOINT, 'NONE"','SOLID®
1, 'NORMAL"', "NORMAL STRESSS$S','FULL','BIND")
XEND = ,0S

CALL STRESY (2,1,NPOINT,YC,XSTART,XEND)
CALL GRAPH (X,42,Y,42,NPOINT, 'NONE', 'SOLID!
1,"NORMAL ', 'SHEAR STRESSS$S','FULL','BIND'")
XEND = ,08

CALL STRESY (3,1,NPUINT,YC,XSTART,XEND)
CALL GRAPH (X,42,Y,42,NPOINT,"NONE','SOLID"
1,"'NORMAL ', "AXTAL STRESSSS','FULL','BIND')
CALL STRESY (3,2,NPOINT,YC,XSTAKT,XEND)
CALL GRAPH (Xa’?oY:’ZINPOINT"NONE'r'SOLID'
1,'NORMAL ', "AXTAL STRESSSS$','FULL','BIND')
STOP

FORMAT (14)

FORMAT (1X,//,30X,'THE LAST FOURIER TERM =
END

51
0.
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OF A TWO-LAYER

THIS PROGRAM CALCULATES THE STRESSES AT THE INTERFACE OF THE TWO
1SOTROPIC LAYERS (YC = 0.). THE NORMAL, SHEAR,
ARE PLOTTED FOR THE UNIFORM TEMPERATURE C*SE,

(sHOULD BE 0DD)

p! X/L 88,0

e? X/L $8°,!

o' X/L 8387,

o' X/L 883,

', 14)

AND AXIAL STRESSES

$8!

8!

$s!

£3!

Wl




¢FOR,1S8 INPUT
SUBROUTINE INPUY
IMPLICIT DOUBLE PRECISION (A=H,0-2)
c THIS ROUTINE READS THE MATERIAL PROPERTIES FOR THE 2 OR 3 ISOTROPIC

c LAYERS WHICH ARE UNMDER A UNIFORM TEMPERATURE DISTRIBUTION,

COMMON/BLKI/E1,E2,E3,XNUL,XNU2,XNUZ,ALPHAL,ALPHAZ2,ALPHAZ,BETAL,
I1BETA2,BETA3

COMMON/BLK3/ NUMLAY

COMMON/RLKB/XLEN

COMMON/BLKIO/DELTA(3)

IF ONLY TWO LAYERS ARE TO BE CONSIDERED, THE CONSTANTS FOR LAYER
NUMBER 3 SHOULD BE SET EQUAL TO ZERO.
READ THE NUMBER OF LAYERS, (FIRST COLUMN IN INPUT CARD)

READ (S,3100) NUMLAY

WRITE (6,180)

WRITE (6,190) NUMLAY

aNeNaNal

READ THE MATERIAL PROPERTIES. (3F20,8)
WRITE (6,181%)
READ (S5,101) El,E2,E}
WRITE (6,191) E1,E2,E3
READ (5,101) XNUi,xNU2,xNU3
NRITE (6,192) XNUI1,XNU2,XNU3
READ (S,101) ALPHAL,ALPHAP?,ALPHADZ
WRITE (6,193) ALPHAY,ALPRAZ2,ALPHA}

[p N el

C READ THE THICKNESS OF EACH LAYER,
READ (S,101) (DELTA(I),]I=1,3)
WRITE (6,194) (DELTA(Ii,I1=1,34)

c XLEN =~ THE LENGTH OF THE BEAM/PI,
READ. (5,101) XLEN
ARITE (6,195) XLEN
BETAL = DELTA(1)/XLEN

BETA2 = DELTA(2)/XLEN
BETA3 = DELTA(3)/XLEN
RETURN

100 FORMAT (J11)
101 FORMAT (3+20,8)
160 FUORMAT ('1',37X,'THERMAL STRESSES IN LAMINATED BEAMS OF ISOTROPIC
IMATERIALSY',//7) .
181 FORMAT (1X,//,U5%, 'LAYER 3',13%, 'LAYER 2',13X, 'LAYER 3')
190 FORMAT ()X,//,45X, "NUMBER OF JISOTROPIC LAYERS = ',11,//)
191 FORMAT (1X,//,10X,'YOUNG S MODULOUS',12X,F15.5,2(5X,E15.5))
192 FORMAT (1X,//,10X,'PDISSUN S RATIO',13X,E15.5,2(5X,F15,5))
193 FORMAT (1X,//,10X, ' THERMAL EXPANSION CGEF',6X,E15,5,2(5X,E15,5))
194 FORMAT (1%X,//,10X,'THICKNESS ‘y BX,E1S5,.5,2(5X,E15,5))
195 FORMAT (i1X,//77,30%,'(BEAM LENGTH) / PI = 'vE15.95)
END




eFOR,1S DETMATY
SUBROUTINE DETMAT

aNeXa)

IMPLICIT

DOUBLE PRECISION (A-H,0-2)
THIS SUBROUTINE DETERMINES THE MATRICIES FOR THE TWO LAYER ISOTROUPIC

AND UNIFORM TEMPERATURE CASE

10

COMMON/BLK1/E1,E2,E3,XNUL,XNU2,XNU3,ALPHAL,ALPHA2,ALPHA3,BETAL,

1BETA2,BETAS
CCMMON/BLKZ2/ N
COMMON/BLKUYU/A(B,8),B(8)

IF (N,GT.1) GO 10 10
D1 = E2/E1

D2 = 1. + XNUI
D3 =1, + XNUZ2
po11=1,8
B(I) = 0

DO 2 J = 1,8
A(1,J) = 0,
CONTINUE
CONTINUE

A(1,1) =1,
5(205) = l.
A(%,3) =1,
5(0,7) = "1-
A(S,1) = 1,
A(5,5) = -1,
A(6,3) =1,
A(e,4) = 1,
A(6,7) = ".
A(6,8) = -1,
A(8,3) = DLiIxD?2
A(7,1) = A(8,3)
A(7,2) = 2.+D1
A(7,5) = -1,%xD3
A(7,6) = -2,
A(B,4) = ~1,4D1a(), = XNU1)
A(B,7) = A(7,5)
A(E,8) = 1, - XNU2
XN = N

BIN = XNxRETAQ
B2N = XN*BFTA2

TH1 =DTANH(BIN)
TH2 =DTAMH(BZ2N)

A(t1,2)
A(CY,3)
A(1,4)
A(3,1)
A(3,2)
A(3,d4)
A(2,6)
A(2,7)
A(2,R)
A(4,S)

BINATH1

TH1

BIN

THI

BIN ¢+ TH1

1, ¢ AlCY,2)
B2N&TH?
-1.2TH?
~1,4E2N

THZ2




[alaNaNaNe]

420
410

299

TwO OR THREE LAYER CASE,
THE NUMBER OF LAYERS NUMLAY,
SUBROUTINE ODETMAT,
THE SOLUTION VECTOR IS CC(XK,1),

A(4,6) = B2N + TH2
A(4,8) = =1, = (B2NxTH2)
B(7) = 1,/%N

RETURN

END

6FCR,IS SOLVE

SUBROUTINE SOLVE
IMPLICIT DOUBLE PRECISION (A-H,0-2)

THIS SUBROUTINE SOLVES THE MATRIX EQUATIONS FOR A GIVEN N FOR THE
THE REGUIRED INPUT IS THE FOURIER NUMBER N,
AND THE MATRIX A AND VECTOR B FROM

THE MACC SUBROUTINE MTSOLV IS UTILIZED,

COMMON/BLKZ2/ N

COMMON/BLK3/ NUMLAY
COMMON/BLKU/AMAT(8,8),8BVEC(8)
COMMON/RLK13/CC(8,1)
COMMON/BLK20/ AA(B,8),BB(8,1)
MATSIZ = 4xNUMLAY

00 410 I = 1,MATSIZ

8B8(1,1) = BVEC(I)

DO 420 J = 1,MATSIZ

AACL,J) = AMATI(I,J)

CONTINUE

CUNTINUE

CALL MTSLVD (AA,BB,CC,IRET)
RETURN

END

B5F0R,1S COEF

SURROUTINE COEF(1,YC)
IMPLICIT DOUBLE PRECISION (A=-H,0-2)

c THIS SUBROUTINE OETERMINES THE FOURIER COEFFICIENTS FOR THE STRESSES
c IN THE I TH LAYER ON Y = 0,

COMMON/BLKZ/ N
COMMON/BLKB/XLEN
COMMON/BLK13/BB(8,1)

COMMON/BLKI4/COEFN(1800),COEFS(1800),COEFA(1800,2)

IN = N

M = (N ¢+ 1)/2

COEFN(M) = BB(1,1)

CUEFS(M) BB(3,1) + B8B(4,1)

COEFA (M,1) = BB(1,1) + 2.4BB(2,1)
COEFA (M,2) = BB(S,1) + 2.*BB(6,1)
RE TURN

END

¢FOR,1S STRESY
SUBROUTINE STKESY (ITYPE,1,NPOINT,YC,XSTART,XEND)

IMPLICIT DOUBLE PRECISION (A~M,0-~2)

-4~




[z NaNaNasNeNalal

600

611
601

720
700
7156

721
701

755

THIS SUBROUTINE COMPUTES THE NORMAL, SHEAR, OR AXIAL STRESSES ON
THE LINE Y = 0, AT NPOINT NUMBER OF POINTS FROM X = XSTART 71O X =
XEND, (X = 0 TO 1 IS THE ENTIRE LENGTH OF THE BEAM) IF ITYPE = I,
THE NORMAL STRESS IS COMPUTED, IF ITYPE = 2, THE SHEAR STRESS IS
COMPUTED, OR IF ITYPE = 3, THE AXIAL STRESS IS COMPUTED, THE (X,Y)
COORDINATES ARE RETURNED IN THE VECTORS X AND Y, THESE STRESSES
ARE CALCULATED FOR THE I TH LAYER,

THIS IS OONE SO BOTH END POINTS WILL BE PLOTTED , HOWEVER, IF NPOINT

COMMON/BLK7/NTERMS
COMMON/BLKB/XLEN

COMMON/BLK12/X(301),Y(301)
COMMON/BLK14/COEFN(1800),COEFS(1800),COEFA(1800,2)
IF (ITYPE.EQ.2) GO TO 600

IF (ITYPE.EQ.3) GO TO 611

WRITE (6,691) YC

GO 70 601

WRITE (6,692) YC

GO TO 601

WRITE (6,671) YC R
WRITE (6,693) I,NPOINT
WRITE (6,694) XSTART,XEND

1, THIS ROUTINE WILL FAIL,
XPOINT = NPUINT - 1

PI = 3,1415926536
1IF (ITYPE.EQ.2) GO TO 75S
IF (ITYPE.EQ.3) GO TO 756
DO 700 J = 1,NPOINT
2J =J -1
X(JY = ZJIx(XEND = XSTART)/XPOINT + XSTARTY
ARG = X(J)=xPl
XSuM = 0,
0O 720 N = 1,NTERMS,2
M = (N ¢+ 1)/2
XN = N
XSUM = XSUM + COEFN(M)*DSIN(CARGAXN)
CONTINUE
Y(J) = ~-1,*XSUM
CONTINUE
GO 17O 770
DO 701 J = {,NPOINT
2J = J -1 ]
X(J) = ZIA(XEND = XSTART)/XPOINT + XSTART
ARG = X(J)=»PI
XSUM = 0,
DO 721 N = 1 ,NTERVS,2
M = (N ¢ 1)s2
XN = N
XSUM = XSUM 4 COEFA(M,I)ADSIN(ARG*XN)
CONTINUE
Y(J) = XSuM
CONTINUE
60 10 770
DO 710 J = 1,KRPOINT

Rt VO
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2J = J =}
X(J) =
ARG = X(J)xPI
Xsum = 0,
DO 730 N = 1,NTERMS,?2
M = (N ¢+ 1)/2
XN = N
XSUM =
CONTINUE
Y(J) = =-1,2XSUM
CONTINUE
RETURN

730

710
770
694

1 TO 'lFb.S)

691 FORMAT (1X,/////7,20X,'THE NORMAL STRESS ON THE LINE Y =

1' IS PLOTTED ')

692 FORMAT (1X,/////,20X,'THE SHEAR

1' IS PLOTTED ')

671 FORMAT (1X,/////,20X,'THE AXIAL

1' IS PLOTTED ')

ZJx (XEND =~ XSTART)/XPOINT

XSUM + COEFS(M)*DCOS(ARG%XN)

FORMAT (1X,///,20%,'THIS STRESS IS T0O BE PLOTTED FROM

STRESS ON THE LINE Y

STRESS ON THE LINE Y

+ XSTAR1

x = 'lFbDBQ.

'vF6,.3,

YeF6.3,

1,F6.3,

693 FORMAT (20X,'FOR LAYER NUMBER ',I1,°' . THE NUMBER OF POINTS PLOT
1TED IS 'I4,' ")
780 FORMAT (I3)
781 FORMAT (F10,5)
790 FORMAT (1X,40X, 'NUMBER OF POINTS TO BE PLOTTED = ',13)
791 FORMAT (1X,40X,' LENGTH OF BEAM TO BE PLOTTED = ',F6,3)
END
{K US GOVERNMENT PRINTING OFFICE 1980 651 111, 2
1.5-27-6/80
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